КУРС ЦБ $ USD 94,0922 EUR 100,5316
00:00:00  00.00.0000
Москва 0 , 0м/с
Кибер-земледелие – сельское хозяйство переходит на новый уровень развития
Компьютерные алгоритмы позволяют проектировать растения с улучшенными характеристиками и без ГМО

Как заставить растения стать более вкусными и ароматными? Ученые из Медиа Лаборатории Массачусетского технологического института говорят, что для этого требуется сочетание ботаники, алгоритмов машинного обучения и немножко старой доброй химии.

Исследователи Медиа Лаборатории «Открытая сельскохозяйственная инициатива» сообщают, что они создали растения базилика, которые более вкусны, чем те, которые вы когда-либо пробовали.

Никакой генетической модификации при этом не применяли: исследователи использовали компьютерные алгоритмы для определения оптимальных условий выращивания для максимальной концентрации ароматических молекул, известных как летучие соединения.

И это только начало новой эры «кибер-сельского хозяйства», говорит Калеб Харпер, главный научный сотрудник MIT Media Lab и директор группы OpenAg.

В настоящее время его группа работает над улучшением свойств трав для борьбы с болезнями человека, и они также надеются помочь производителям адаптироваться к изменяющемуся климату, изучая, как растут культуры в различных условиях. «Наша цель - разработать технологию с открытым исходным кодом на стыке сбора данных, зондирования и машинного обучения и применить ее к сельскохозяйственным исследованиям таким образом, которого раньше не было», - говорит Харпер.

«Мы действительно заинтересованы в создании сетевых инструментов, которые могут учитывать историю растения, его фенотип, набор стрессов, с которыми он сталкивается, и его генетику, и оцифровывать это, чтобы мы лучше понять взаимодействие растения и окружающей среды», - сообщил он.

В своем опыте с растениями базилика ученые, к своему удивлению, обнаружили, что воздействие света на растения 24 часа в сутки значительно улучшает вкус. Традиционные методы никогда бы не привели к такому пониманию, говорит Джон де ла Парра, руководитель исследования группы OpenAg и автор исследования.

«Вы не могли бы обнаружить это в условиях традиционного земледелия. Если вы не в Антарктиде, в реальном мире нет 24-часового фотопериода для тестирования. Вы должны создать искусственные условия, чтобы сделать открытие», - говорит он.

Максимизация аромата и полезных признаков

Растения в лаборатории MIT-Bates в Мидлтоне, штат Массачусетс, растения OpenAg выращиваются в транспортировочных контейнерах, модифицированных для тщательного контроля  условий окружающей среды, включая свет, температуру и влажность.

Этот вид сельского хозяйства имеет много названий - контролируемое экологическое сельское хозяйство, вертикальное сельское хозяйство, городское сельское хозяйство - и все еще остается нишевым рынком, но быстро растет, говорит Харпер. В Японии один такой «завод» производит сотни тысяч головок салата каждую неделю. Тем не менее, достаточном и примеров неудач, так как между компаниями, работающими над разработкой оборудования для сити-фермеров, очень мало обмена информацией.

Одной из целей инициативы MIT является преодоление такого рода «секретности» путем обеспечения свободного доступа ко всему оборудованию, программному обеспечению и данным OpenAg.

«В настоящее время в сельскохозяйственном пространстве существует большая проблема, связанная с отсутствием общедоступных данных, отсутствием стандартов сбора данных и отсутствием обмена данными», - говорит Харпер.

«Таким образом, в то время как машинное обучение и искусственный интеллект, а также разработка передовых алгоритмов продвигались быстро, сбор значимых сельскохозяйственных данных отстает. Наши инструменты - с открытым исходным кодом, и мы надеемся, что они будут быстрее распространяться и создавать возможность для совместной сетевой науки», - сказал ученый.

В исследовании команда Массачусетского технологического института намеревалась продемонстрировать реальность своего подхода, который включает выращивание растений в разных условиях в гидропонных контейнерах (члены команды называют их «пищевые компьютеры»).

Созданный инструмент позволил ученым изменять продолжительность освещения и продолжительность воздействия ультрафиолета. Как только растения выросли, они оценили вкус базилика, измерив концентрацию летучих соединений, обнаруженных в листьях, используя традиционные методы аналитической химии, такие как газовая хроматография и масс-спектрометрия. Вся информация из экспериментов была затем введена в алгоритмы машинного обучения, которые оценивали миллионы возможных комбинаций длительности света и ультрафиолета и генерировали параметры условий, которые максимизировали бы вкус, включая 24-часовой режим дневного света.

В настоящее время исследователи работают над созданием растений базилика с более высоким содержанием соединений, которые могут помочь в борьбе с такими заболеваниями, как диабет.

Известно, что базилик и другие растения содержат соединения, которые помогают контролировать уровень сахара в крови, и в предыдущей работе де ла Парра показал, что эти соединения могут стимулироваться изменением условий окружающей среды.

В настоящее время исследователи изучают эффекты настройки других переменных среды, таких как температура, влажность и цвет света, а также эффекты добавления растительных гормонов или питательных веществ. В одном исследовании они подвергают растения воздействию хитозана, полимера, обнаруживаемого в оболочках насекомых, который заставляет растение производить различные химические соединения, чтобы предотвратить нападение вредителей.

Они также заинтересованы в использовании своего подхода для повышения урожайности лекарственных растений, таких как розовый барвинок Мадагаскара, который является единственным источником противораковых соединений винкристин и винбластин.

Кибер-АПК в ГМО не нуждается?

«Этот подход предлагает альтернативу генетической модификации сельскохозяйственных культур, метод, который не всем удобен», говорит Альберт-Ласло Барабаси, профессор сетевых наук в Северо-Восточном университете Бостона, США.

«В этой статье используются современные идеи о цифровом сельском хозяйстве для систематического изменения химического состава растений, которые мы едим, путем изменения условий окружающей среды, в которых выращиваются растения. Это показывает, что мы можем использовать машинное обучение и хорошо контролируемые условия, чтобы найти ключевые моменты, при которых урожай становится вкуснее и полезнее», - прокомментировал Барабаси, который не принимал участия в исследовании.

Ученые говорят, что еще одним важным приложением для кибер-сельского хозяйства является адаптация культур к изменению климата.

Хотя для понимания того, как различные условия будут влиять на сельскохозяйственные культуры, обычно требуются годы или десятилетия, в контролируемой сельскохозяйственной среде можно провести множество экспериментов за короткий период времени.

«Когда вы выращиваете растения в поле, вы должны полагаться на погоду и другие факторы, и вы должны ждать следующего вегетационного периода. Но с такими системами, как наша, мы можем значительно увеличить объем знаний, который можно получить гораздо быстрее», - говорит де ла Парра.

В настоящее время команда OpenAg проводит одно из таких исследований лесных орехов для производителя конфет Ferrero, компании, потребляющей около 25 процентов лесных орехов в мире.

«Пищевые компьютеры» установили в школах США

В рамках своей образовательной миссии исследователи разработали небольшие «персональные компьютеры для питания» - коробки, которые можно использовать для выращивания растений в контролируемых условиях, и отправлять данных обратно в команду MIT. В настоящее время они используются многими учащимися старших и средних школ в Соединенных Штатах, а также среди разнообразных пользователей в 65 странах, которые могут поделиться своими идеями и результатами через онлайн-форум.

«Для нас каждая коробка - это источник данных, и хотя мы очень заинтересованы в получении информации, оборудование является еще и платформой для экспериментов для обучения экологическим наукам, программированию, химии и математике по-новому», - говорит Харпер.

 

Фото: agriplant.ru

Источники: АгроXXI
четверг, 18 апреля 2024
среда, 17 апреля 2024
вторник, 16 апреля 2024
вторник, 09 апреля 2024
понедельник, 08 апреля 2024
пятница, 05 апреля 2024
четверг, 04 апреля 2024
среда, 03 апреля 2024
понедельник, 01 апреля 2024
среда, 27 марта 2024
вторник, 26 марта 2024
пятница, 22 марта 2024
четверг, 21 марта 2024
среда, 20 марта 2024
Все новости